
Dynamics of vortex lines in turbulent flows

Barak Galanti, Itamar Procaccia, and Daniel Segel
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 9 May 1996; revised manuscript received 7 August 1996!

We examine the dynamic interplay between vorticity magnitude and vortex line geometry, and its relevance
for curbing potential finite-time singularities in incompressible Navier-Stokes flows. We present direct numeri-
cal simulations of flows with various low and mid-range Reynolds numbers and different types of forcing. The
central conclusion is that the vortex lines in regions of high vorticity tend to be straight and well aligned. Such
an organization indicates the existence of a self-correcting mechanism that cancels the quadratic nonlinearity
inherent in the vorticity equation. We consider several relevant effects, including the observation of straight-
ening of vortex lines by stretching.@S1063-651X~96!11711-6#

PACS number~s!: 47.27.2i

I. INTRODUCTION

The aim of this paper is to examine the dynamics of vor-
tex lines and vortex tubes in turbulent flows. Our motivation
is that, on the one hand, numerical simulations@1–4# and
experiments@5,6# indicate that even in highly complex tur-
bulent flows the vortex lines in regions of intense vorticity
appear to be quite straight on the scale of the entire system.
Visualizations of the numerical data in these papers show the
domination of the flow by a tangle of ‘‘wormlike’’ vortex
tubes. We thus take, in this paper, the existence of such tubes
as given, and indeed visualizations of vorticity isosets in the
data presented here show a collection of very similar tubes.
We note, on the other hand, the apparent lack of finite-time
singularities in incompressible Navier-Stokes flows. It is
tempting to propose that there exists a connection between
the two phenomena. Indeed, it was proposed in@7# that such
a connection is indicated by mathematical analysis. In this
paper we proceed to examine the same issues on the basis of
direct numerical simulations.

As is well known, the Navier-Stokes dynamics of the vor-
ticity contains a term that may lead to a finite-time singular-
ity. To see this we start from the Navier-Stokes~NS! equa-
tions for the velocity fieldu(x,t) of an incompressible fluid

Dtu[
]u

]t
1~u•“ !u52“p1n¹2u1f, ~1!

“•u50, ~2!

wherep(x,t) is the pressure,f(x,t) is the external driving,
andn is the kinematic viscosity. Defining the vorticityv as
v[“3u, we find the vorticity equation~disregarding the
forcing!

Dtv[
]v

] t
1~u•“ !v5~v•“ !u1n¹2v. ~3!

The term that can lead to singular growth is the first term on
the right-hand side of this equation. Sincev is the antisym-
metric part of“u this term is potentially quadratic and may
lead to finite-time singularities. This can be seen more ex-
plicitly in the equation for the vorticity magnitude

]v

]t
1~u•“ !v2n¹2v5~a2nu“ju2!v. ~4!

In this equationj5v/v and

a5j•~j•“ !u. ~5!

One can express the ‘‘stretching rate’’a in terms of the
vorticity by using the Biot-Savart inversion of the curl op-
erator, giving us the expression@8#

a~x!5
3

4pE ~ ŷ•j!$ŷ•@v~x1y!3j~x!#%
dy

uyu3
. ~6!

We see that this integral over the vorticity includes a contri-
bution from the vorticity at the pointx. If the vorticity in-
creases at a point the stretching rate at that point increases
and the possibility of a finite-time singularity is created. In-
deed, numerical simulations of highly symmetric flows by
Kerr @9# and Boratav and Pelz@10# indicate that the Euler
~inviscid! incompressible equations can reach a finite-time
singularity in certain specific situations. Such evidence of
blowups has not been observed in viscid flow.

It is entirely possible that in physical systems the potential
singularity is avoided by mechanisms that are not contained
in the incompressible equations. For example, an abnormal
local increase in vorticity may be carried away by sound
modes that are dispersed over a long distance. Yet one rec-
ognizes that no finite-time singularity has ever been seen in
simulations of incompressible fluids, and it is thus interesting
to ask whether those fluids exhibit mechanisms to avoid such
singularities as well. We thus seek mechanisms to curb
blowups that stem from the geometry of the vorticity field. In
particular we revisit in this paper ideas presented recently@7#
that connect the dynamics of vortex lines with such mecha-
nisms. Vortex lines are those lines that are everywhere tan-
gent tov. It can be seen directly from~5! that if the vortex
field is locally aligned and straight, the local contribution to
a vanishes and with it the possibility of finite-time singular-
ity. The main theoretical idea proposed in@7# is that in those
regions undergoing strong stretching, there is also a mecha-
nism for local straightening of the vortex lines. This paper
attempts to examine this idea further with the help of direct
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numerical simulations. Furthermore, we examine in general
the statistics of geometric properties such as the curvature
and torsion as characteristics of the flow field.

The structure of the paper is as follows. In Sec. II we
discuss the relevant characteristics of vortex lines: their cur-
vature, torsion, and alignment with respect to neighboring
lines. In Sec. III we present our numerical methods of simu-
lation and analysis. Section IV deals with results that pertain
to low Reynolds number flows. We stress in this section the
importance of the structure of the vorticity field near zeros of
the field and the independence of the strength of curvature
from that of the energy contained in small scale modes. In
Sec. V, which is the central section of this paper, high Rey-
nolds flows are considered. The main conclusions from the
simulations are that indeed in high vorticity regions vortex
lines are relatively straight and aligned and that there are
strong correlations between the magnitude of stretching and
straightness of the vorticity field. We feel that these numeri-
cal results on the whole strengthen the possible connection
between the dynamics of vortex lines and the control of
blowups in the incompressible Navier-Stokes equations.

II. GEOMETRY OF VORTEX LINES

A. Frenet frame

In this study we will consider three geometrical quantities
characterizing the vortex lines: theircurvature,misalignment
and torsion. Each is a local quantity, defined in terms of the
vorticity direction fieldj @11–13#.

The u“ju measures the departure of the vortex lines from
complete straightness and alignment; it is the inverse of a
length scale. The curvature is defined as@14#

c5
1

R
[u~j•“ !ju ~7!

and is the inverse of the radius of curvatureR of the vortex
line.

One can define at each point in a vector field a local
orthogonal frame called theFrenet frame@14#, defined in
terms of three orthogonal unit vectors, the first in the vector
field directionj, the second in the direction of the curvature
n of the vortex line (j•“)j5cn and the completing binor-
mal b. The torsionT, also with units of an inverse length
scale, can be written in closed form as

T5u~j•“ !bu ~8!

and represents the turning of the binormal as one goes along
the filament; in other words, it represents the local deviation
of the vortex line from a plane, just as the curvature repre-
sents the local deviation of the vortex line from straightness.
Curved lines havecÞ0, twisted lines haveTÞ0.

The totalu“ju can be seen as the vector sum of the cur-
vature and the lack of alignment between the vortex lines
and the neighboring lines in the normal and binormal direc-
tions

u“ju25c21u~n•“ !ju21u~b•“ !ju2. ~9!

We can thus define the misalignment by

N25u“ju22c25u~n•“ !ju21u~b•“ !ju2. ~10!

N expresses the lack of alignment of a vortex line relative to
its neighbors, through local twisting or divergence.

B. Line geometry and dynamics

One can distinguish between viscid and inviscid effects in
vorticity dynamics, corresponding to the second and first
terms of Eq.~3! respectively. In the context of inviscid dy-
namics one can also distinguish between locally induced and
nonlocally induced vorticity growth, corresponding, respec-
tively, to the close and distant integration ranges in Eq.~6!.

Different forms of vortex line distortion can contribute to
the locally induced vorticity growth. The analysis of@7# con-
sidered well-aligned tubes, defined as those for which the
curvature dominates the total distortionu“ju. The ‘‘local’’
rate of stretchinga loc was calculated. By the ‘‘local’’ contri-
bution toa(x) we mean the integral of Eq.~6! taken only
over a small ball aroundx. This contribution was found to be
proportional to the vorticity and the curvature

a loc;vc. ~11!

This would seem to create a quadratic nonlinearity in Eq.~3!,
leading to a finite-time singularity; a similar effect can arise
in the local growth rate for any geometry.

Reference@7# then uses the Navier-Stokes equation, Eq.
~2! to derive an equation for the inviscid evolution of the
curvature

DtC52ac2TSb1~j•“ !Sn , ~12!

whereSb andSn are two strain tensor components

Sb[b•S•j, Sn[n•S•j. ~13!

Reference@7# suggested that since no particular correlations
are expected between the terms on the right-hand side, in
regions of rapid growth of vorticity~so thata is high! the
first term will be dominant and will straighten the vortex at
just the same rate that the vorticity grows. Thus in Eq.~12!
the growth in the vorticity will be canceled by the growth in
the radius of curvature and the size of the local contribution
to a will saturate; this will turn the potential finite-time sin-
gularity in Eq.~3! into exponential growth.

Reference@7# also considers the effect of viscosity on the
vortex lines. It was shown that there exist viscid effects that
enhance alignment and straightening of vortex lines, particu-
larly in regions of strong vorticity magnitude.

Thus Ref.@7# considers two effects that can influence the
connection between vorticity magnitude and curvature: the
straightening of vortex lines by stretching and by viscid
smoothing, both causing curvature to decrease with increas-
ing vorticity. The first should be strong in regions of strong
enough vorticity to ensure that a largea has been operating
for some time, the second in medium-strength vorticity re-
gions where diffusion has had a chance to be effective.

However, we here note that two other effects influencing
the connection between vorticity magnitude and curvature
can have a role. A third effect has the same tendency for low
vorticity magnitudes. Look at the vicinity of a zero point of
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the vorticity. Use coordinates based at a zero point and with
axes in the eigendirections of the vorticity gradient tensor.
Near the zero the vorticity is

vx5ax, vy56by, vz52gz ~14!

~from incompressibilitya6b2g50). One can then verify
that both the curvature and the misalignment diverge when
approaching the zero point. Given this structure, in a mono-
tonic neighborhood around a zero point both the curvature
and the misalignment will decrease with increasing vorticity.
The effect should also persist in a smooth neighborhood of
time after the disappearance of such a zero point. A further
consequence of the incompressibility of vorticity“•v50 is
that

“•j52
~j•“ !v

v
. ~15!

This quantifies a natural conclusion from Kelvin’s law: it
implies that if going along a vortex line the vorticity goes to
zero,“•j, and therefore the total distortionu“ju, diverges. It
also shows that if along a vortex line there is a polynomial
rise in the magnitude of vorticity, it is necessarily accompa-
nied by a drop in the divergence“•j in the vorticity direc-
tion. This effect should be strong near zero-vorticity points
and in regions of polynomial growth. Divergence is a part of
the total misalignment and entails curvature generically since
a swelling vortex tube has curved vortex lines. This means
that ablowupof divergence implies a blowup of misalign-
ment and curvature.Correlations between divergence and
vorticity can also affect the latter three quantities, although
such a link is not strictly necessary.

Finally, as it is clear from our former discussion, curva-
ture can induce local stretching. If the local induction could
be consistently dominant, this fourth effect would create high
vorticity in highly curved regions. In view of the discussion
in @7#, this would happen if the other strain components hap-
pen to keep the curvature high despite stretching. This effect
should be strong in regions of high curvature and high vor-
ticity.

To summarize, the first three effects act to create a nega-
tive correlation between curvature and vorticity, while the
fourth acts to create a positive correlation; the first effect
should hold, as far as we can see, for curvature only, while
the last three hold equally for curvature and misalignment.
The study of the connection between curvature or misalign-
ment and vorticity magnitude will take a central role in our
study.

We finally discuss torsion. Of the above four effects, only
the third does not hold for torsion since torsion does not
necessarily diverge near a zero point. A dynamic equation
for the torsion is derived in@7# in the same way as for the
curvature; the result is

DtT52aT1cSb1~j•“ !FTc Sn11

c
~j•“ !SbG , ~16!

so one would expect stretching to reduce torsion in the same
way that it reduces curvature. In@7# it is shown that diffusion
too reduces the torsion of vortex lines.

III. METHODS

A. Simulation

The data analyzed comes from our direct numerical simu-
lations of isotropic homogenous turbulence in a periodic box.
A pseudospectral method was used. Dealiasing was per-
formed by setting allũ(k) with k. 2

3kmax to zero before
transforming theũ(k) to real space in order to perform a
product.~One might mention that no significant differences
between runs with and without aliasing were observed.! The
runs were performed on a Cray C94 supercomputer at the
Cray Research Center, the Cray J916 at the Weizmann Insti-
tute and the Cray J932 at Israel’s Inter University Computer
Center.

For most of the runs the forcing used was the Arnold-
Beltrami-Childress~ABC! force @15#, which is defined in
terms of the ABC velocity fieldU, whose components are

Ux5Asin~k0z!1Ccos~k0y!,

Uy5Bsin~k0x!1Acos~k0z!,

Uz5Csin~k0y!1Bcos~k0x!. ~17!

This flow is a solution of the Euler equations~i.e., the NS
equations withn50 and no forcing! and a solution of the NS
equations with forcing given by the ABCforce f5nk0

2U. The
reason for using this forcing was the existence of detailed
studies of this flow at low Reynolds numbers@16,17# and the
ability of the flow to excite turbulence rapidly due to its
chaotic nature.

In our runs we used the parametersA5B5C51 and
k051. The ABC solution for this forcing loses its stability at
Re513.05@16# ~we here use the definition Re51/n). Gallo-
way and Frisch@16# and later Podvigina and Pouquet@17#
have studied the stability of this flow for a range of Reynolds
numbers and found that it undergoes a series of bifurcations
and reaches a temporally chaotic state for Re.23.

Some runs were also performed using a random forcing in
order to see if some of the effects we observe might result
from the particular form of the ABC force. The random force
used, in particular, has chiral symmetry and is much less
coherent in time than the ABC force. We forced all the
modes withuku,2.5, i.e., the modes (61,0,0), (61,61,0),
(61,61,61), (62,0,0), and (62,61,0) and their permuta-
tions. The forcing was of white noise form, i.e. the real and
imaginary parts of each of the complex Fourier components
of each mode were chosen as two independent random num-
bers distributed uniformly between 1 and21, with no cor-
relations in space or time.

A number of runs at various integral-scale Reynolds num-
bers were performed. The parameters of the runs are summa-
rized in Table I.

B. Analytic routines

In principle the calculation of the geometrical quantities
could be done using the definitions@see Eqs.~7! and ~8!#
given in the Introduction. However, this makes the calcula-
tion in Fourier space of derivatives impossible; these quan-
tities, which involve derivatives of the vorticity direction
field j, are singular at those points wherej is undefined, i.e.,
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wherev50. Because of this problem, formulas were used
expressing all quantities in terms of derivatives of the vor-
ticity vector, which is regular and differentiable everywhere.
The formulas for calculation of the curvature, total distor-
tion, and torsion are given in the Appendix.

The code for the calculations was checked on two kinds
of simple flows. For very simple flows the geometric calcu-
lations can be done analytically. Specifically, expressions
were found for the curvature in the Roberts flow

ux
R5sin~x!cos~y!,

uy
R52cos~x!sin~y!,

uz
R5A2sin~x!sin~y!, ~18!

and for the Roberts flow modified by a uniform flow
v5uR1(a,0,0). In addition, we calculated the curvature,
misalignment and torsion~equal to zero! in the flow

vx5a1sin~x!,

vy5a,

vz5a, ~19!

with a an arbitrary constant. Comparisons with the numerical
results of our code gave excellent results, maximal errors not
exceeding machine precision. For more complex flows find-
ing an analytic expression for the geometric quantities is
prohibitively difficult, but derivatives of the velocity field
can be performed analytically rather easily. We can then use
these expressions for the derivatives to calculate geometric
quantities by performing the remaining algebra numerically.
Calculations of this type were performed for the ABC flow
with A5B5C51 and for the Roberts flow for curvature,
misalignment, and torsion. Comparisons with our code’s re-
sults were again excellent, with maximal errors reaching
10210.

C. Statistical analysis

The code used produced directly as output statistical
analyses of the quantities studied, in the form of probability
distribution functions~PDFs! and what we call weighted dis-
tribution functions~WDFs!. The PDF of a quantityx, such as
curvature, is calculated by dividing a given range of possible
values ofx into a number of discrete boxes, counting the

number of points whose value ofx falls within each box,
then normalizing by the total number of points. A WDF is
designed to find the dependence of a quantityx ~say, the
curvature! on a quantityy ~say, vorticity! on average. To do
this, we divide a range of values ofy into a number of boxes
and find the number of points whose value ofy falls in each
box and the sum of the values ofx of these points; we then
divide this sum by this number of points to find the average
value of x in each box. Such statistical functions were re-
corded at regular intervals, frequently enough to follow the
main developments of the dynamics and to allow good sta-
tistics. The data sets consists of at least 40 outputs for every
run and reaching up to several hundred outputs for the low
Reynolds runs.

We will now make a few remarks about PDFs in general.
We begin with a formula for the PDF of a scalar quantity in
space, assuming that the dependence of this quantity on
space is given.

Given a functionT(x) defined in some volumeV, the
PDFP(T) is given by

P~T!5
1

V

dV~T!

dT
, ~20!

whereV(T) is the volume of points withT(x)<T. That is,
for smallDT,

P~T!DT5
1

V
@V~T1DT!2V~T!#. ~21!

This is just the formula that we use for our numerical calcu-
lations. If we use a measuredx1dx2 on the surface]V(T) of
V(T) and dx3 for the integration normal to the surface
]V(T), the normal direction depending on the position on
the surface (x1 ,x2), then asDT→0 we have

P~T!5
1

VE]V~T!
dx1dx2

1

u“T~x1 ,x2!u
. ~22!

In discretized space the version of this formula is

P~T!5
1

n (
T~x!5T

1

u“T~x!u
, ~23!

where the sum is over all points in the volume considered
that have the specified value ofT andn is the total number
of points in the volume. While this formula is impractical for

TABLE I. Parameters of the various numerical runs.

Run Forcing Mesh Re Rel L

ABC-20 ABC 323 20 43
ABC-30 ABC 323 30 56
ABC-100 ABC 643 100 43 2.1
ABC-500 ABC 1283 500 56 1.8
ABC-1000 ABC 1283 1000 68 1.75
ABC-1500 ABC 1283 1500 76 1.7
ABC-2200 ABC 1923 2200 93 1.75
R-300 random 643 300 60 1.7
R-1500 random 1283 1500 80 2.0

54 5125DYNAMICS OF VORTEX LINES IN TURBULENT FLOWS



use in numerical calculations, it allows us to conclude that
the value of the PDF for a certain value is determined not
only by the number of points that have that value but also by
the form ~and in particular the steepness! of the function at
the relevant points.

In particular, the PDF diverges at extremal points of the
function, unless the two-dimensional measure of the level set
of the value concerned is zero. The PDF can also diverge if
the level set’s two-dimensional measure diverges, i.e., if the
set’s dimension becomes larger than 2. The PDF vanishes at
points where the gradient of the function diverges and at
points where the level set dimension drops below 2.

IV. LOW REYNOLDS FLOW AND GEOMETRY

In this section we present our observations of low Rey-
nolds flows, i.e., those with integral-scale Reynolds number
of Re520 and 30, together with similar geometric analyses
of two ABC flows. Our main objective is to see how we can
connect analytic understanding and numerical results of the
geometry of flows simpler than fully turbulent flows. We
first observe the Re520 flow and see that it spends most of
the time near one of three ABC attractor flows. We next
analyze the geometry first of the ABC attractor flows, then of
the Re520 flow. Finally we see how the flow changes as the
Reynolds number begins to rise.

A. Nature of the Re520 flow

We first consider the Re520 runs. As noted by Podvigina
and Pouquet in their study@17# of low-Reynolds ABC-forced
flow, at this Re the initial ABC flow ~that with
A5B5C51) is unstable, and after a period of exponential
growth and saturation of the small scales the flow alternates
between three attracting metastable flows in phase space. In
these flows the large-scale modes are close to those of ABC
flows with k051 and (A,B,C)5(0.48,0.48,1.34),
~0.48,1.34,0.48!, and ~1.34,0.48,0.48!, respectively. Thus,
through the period in which the flow is near each one of
these metastable flows a different ABC mode becomes ener-
getically dominant. Podvigina and Pouquet call these ABC
flows theA2 flows and call theA5B5C51 flow theA1
flow. The full metastable flow is anA2 flow distorted by
small-scale components created by the excess of incoming
energy over the energy lost by the dissipation of the ABC
modes.

We can see this behavior in our run; as in the work of
Podvigina and Pouquet, the ABC modesk5~1,0,0!, ~0,1,0!,
and ~0,0,1! alternate in dominating the flow except for short
transients. In our study too the small-scale modes are sizable
particularly in the short periods of transition betweenA2
states. Our results for the chaotic behavior of the ABC
modes and energy shells correspond closely to that presented
by Podvigina and Pouquet.

The similarity of the turbulent flow during the metastable
periods to stationary flows with a simple analytic form
makes the Re520 flow a good place to start a numerical
examination of the geometry of vortex lines. In Fig. 1 we
show the PDFs and WDFs of dependence on vorticity of the
curvature,u“ju, and torsion in theA1 andA2 flows and at
times of metastable and transitional Re520 flow.

B. Geometry of the attractor flows

We here consider and understand theA1 andA2 ~ABC!
flows and see how we can understand analytically the main
features of the statistics of curvature andu“ju in these flows.
We will use the description of the qualitative nature of the
A1 flow found in the study of Childress and Soward@18#.
They showed that the flow contains a set of stagnation points
connected by a network of straight streamlines. The flow
around these stagnation points is characterized by hyperbolic
behavior of two types. Since the sum of the eigenvalues of
the strain tensor must be zero from incompressibility, not all
of the eigenvalues can be either positive or negative, imply-
ing hyperbolicity near the stagnation points. In points with
two positive eigenvalues of the strain tensor, the flow comes
in towards the stagnation point in a narrow jet around the
straight streamline and then fans out into a unstable surface
on which the stagnation point lies. In points with one posi-
tive eigenvalue of the strain tensor the flow comes into the
stagnation point from all directions on a stable surface, exit-
ing the vicinity of the stagnation point in a narrow jet around
the straight streamline. The points of maximal vorticity along
a streamline lie between stagnation points of these two types,
where the flow from a point with one positive eigenvalue
reaches maximal convergence before starting to diverge
again towards a point with two positive eigenvalues. The
points with the highest vorticity (v56) in theA1 flow lie on
the streamlines parallel to thex5y5z direction, called the
primary streamlines by Childress and Soward.

We have made a similar qualitative analysis of the geom-
etry of theA2 flow. This is simpler than that of theA1 flow,
having a lower symmetry of structure. If we analyze, e.g., the
A2 case withB5C, we can see that here too a set of straight
streamlines exist. These lines on thex-y planes are given by
z5p/41mp/2, as seen in Fig. 2. The flow along each
straight streamline is constant in direction; there are no stag-
nation points in this flow. The direction of the flow in these
streamlines rotates byp/2 from one plane to another, so that
the direction of flow on a plane is opposite that on its next-
nearest neighbor. The parallel streamlines on each plane are
A2p apart. The flow near the straight streamline has the
shape of a swirling vortex tube~that is, the streamlines are
twisted! diverging around the pointsxmin of minimal vortic-
ity and converging around the points of maximal vorticity
xmax.

As shown by Dombreet al. @19#, between the straight
streamlines in all ABC flows the flow is dominated by a
system of tubelike regions in which the flow is predomi-
nantly in thex direction, in they direction, and in thez
direction, although the tubes do also twist appreciably. We
will, however, refer less to these structures in our following
analysis.

From these structures follow the dependences of curva-
ture andu“ju on vorticity magnitude seen in Figs. 1~b! and
1~d!. The u“ju when traveling along a primary streamline in
theA1 flow goes from a minimal value at the point of maxi-
mal convergence and vorticity to a divergence towards the
stagnation point. One can verify from Childress and
Soward’s expansion of the flow field near the primary
streamline that theu“ju at thexmax point, where the diver-
gence and curvature are zero, is minimal despite the fact that
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the swirl of the flow around the streamline is strongest there.
The rest of the flow follows this pattern and we get the de-
cline of u“ju with vorticity seen in Fig. 1~d!. This depen-
dence in theA2 flow is remarkably similar to that in the
A1 flow, within the narrower range of vorticity magnitudes
available in theA2 flow. In fact, it seems that if we take the
A1 flow around the streamlines, as it goes from zero to maxi-
mal vorticity, and truncate the bundle at those vorticities cor-
responding to that range of vorticity magnitudes available in
theA2 flow, we will get something very similar to the bundle
around the streamlines in theA2 flow. Naturally, at the top
and bottom of this range of vorticities some adjustment must
be made, as can be seen in Fig. 1~d!.

Further understanding of theu“j(w)u dependence can be
gathered from the equation

u“ju25
1

v2 u“vu22
1

4v4 u“v2u2. ~24!

On the other hand, one can verify that for any ABC flow

u“vu25A21B21C2 ~for k051), which is simply a con-
stant~in our numerics taken to be equal to 3!. Thus, for any
ABC flow

u“ju25
A21B21C2

v2 2
1

4v4 u“v2u2. ~25!

This immediately gives for extremal pointsxex of vorticity
v5vex, wherevexÞ0, the value

u“j~xex!u5
AA21B21C2

vex
. ~26!

The robust dependence ofu“ju onw might suggest that one
could derive an exact relation between the two, at least for
ABC flows. In fact, expansion near thexmin points of the
A1 flow shows that vorticity andu“v2u are not one-to-one
functions, as the isosurfaces of one quantity is a small dis-

FIG. 1. Low Reynolds geometry: PDFs and
dependence~WDF! of curvature on vorticityv
@~a! and~b! respectively#, total distortion@~c! and
~d!#, and torsion@~e! and~f!#. Solid line,A1 flow,
dashed line,A2 flow, dotted line Re520 meta-
stable flow; dash-dotted line, during a Re520
small-scale burst. Note the similarity between the
small-scale burst andA1 and between metastable
andA2 flows.
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tortion of the isosurfaces of the other; however, averaging
over angles we find that̂u“v2u2&56v2, so that near the
maximal point

u“ju2'
A21B21C2

2v2 . ~27!

Going on to curvature, its behavior is close to that of the
u“ju, since the curvature in these flows stems not from curv-
ing of tubes of well-aligned vortex lines but directly from the
swelling and swirling inherent in theu“ju itself. The major
difference is that at the points of minimal vorticity of the
A2 flow the curvature is zero~being on the straight stream-
lines! and small in its neighborhood, while theu“ju is at a
peak at these points due to the strong swirl of the flow
around them.

Furthermore, the PDFs of curvature andu“ju can also be
understood in these terms, as seen in Figs. 1~a! and 1~c!.
Since the curvature is zero only on isolated lines~that is, the
two-dimensional measure of the set is zero! the PDF is zero
at c50 for bothA1 andA2 flows. The dependence of the
PDF on the gradient seen in Eq.~23! does not affect this
conclusion, since one can verify that“c is nonzero at the
streamlines. However, due to the dense network of straight
streamlines in theA1 flow, the PDF peaks at very low cur-
vatures that fill the regions close to the straight streamlines.
In theA2 flow, with its relatively sparsec50 set, the PDF
peaks at a higher curvature. For this flow with its narrower
range of vorticities the distribution of curvature too has a
narrow range, with no high curvatures available in theA1
flow near the stagnation points.

On the other hand, the“u“ju is extremal on the straight
streamlines in both flows; one can verify that“u“ju50 on
these streamlines. Thus, as expected from Eq.~23!, we have
a cusp in the PDF at minimalu“ju.

To summarize our analysis of the ABC flows, we have
shown that the results of our numerical analysis of the ge-
ometry of a simple flow are reasonable and understandable in
terms of the analytic form of the flow.

C. Geometry of the Re520 flow

We now consider the Re520 flows. As we have said,
these are divided into metastable periods ofA2 flows, dis-
torted by small-scale components, and transient bursts; in
these bursts there is rapid change between the relative
strengths of the largest~ABC! modes and heightened small-
scale activity. The examination of this flow will allow us to
examine the effect of small-scale flows and disorder on the
geometry.

As expected, consideration of Figs. 1~a!–1~d! shows that
the geometry of the metastable flow is very similar to that of
the A2 flow. The main difference is a broadening of the
distribution of u“ju. The added distortion to all regions also
shifts the whole distribution to higher values of theu“ju.
This similarity is not surprising since the metastable flow is a
smooth distortion of theA2 flow by small-scale distortions.
What is less expected is the remarkable similarity between
the geometrical statistics of the small-scale bursts and of the
A1 flow. Again, a broadening of the distribution ofu“ju is
the main difference between these flows.

There are two possible explanations for this similarity;
both probably have a role. One is that as one near-A2 flow
melts into another, the magnitudes of the three ABC modes
approach closer to one another. This, despite strong distor-
tion by small-scale flow, plausibly produces something not
too far from theA1 flow, which is that flow with all modes
equal in strength. Another explanation is the kinematic con-
straints of incompressible flow: as the distortion of the meta-
stable flow creates regions of low vorticity, the vortex lines
in these regions necessarily swell, which will enhance mis-
alignment and curvature unless for some reason the swirl is
simultaneously reduced. In dynamic language, as we can see
from Eq. ~12!, this means that the compression~negative
stretching ratea) of the vortex lines, necessary to create
weak vorticity from strong, almost inevitably enhances cur-
vature and misalignment.

Finally, we briefly treat torsion. The torsion in theA1
flow is almost all of one sign, so that the flow breaks the
chiral symmetry. The torsion in theA2 flow seems essen-
tially symmetrical, with an equal amount of points of each
sign. In both cases the torsion is high for both low and high
vorticities, which seems to be a particular property of ABC
flows. The small-scale and metastable Re520 flows are
again respectively similar, except for some broadening of
distributions.

So what do we conclude from the Re520 flow? First of
all, as we saw in the ABC flows, the existence of sizable
curvature and misalignment do not imply the existence of
dominant small-scale components of the flow. In large-scale
flows the curvature and misalignment must appear near vor-
ticity neutral points. Second, in low Reynolds flows the geo-
metrical statistics can be explained by a combination of ki-
nematic constraints and the influence of the forcing.

D. Re530 flow

In the Re530 flow the ABC modes now act chaotically,
although Fig. 3 suggests that they still may be attracted to the
A1 and the A2 states; the behavior around the times
t5540,635,670 andt5600,655 suggests an attraction to the
A1 and theA2 states, respectively. The behavior of the en-

FIG. 2. Structure of theA2 flow, showing straight streamlines
~dashed lines! on the z5p/41mp/2 planes, and the converging
and diverging swirl of the flow around these streamlines.
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ergies in shells ink space of constant widthDk51 is much
smoother than in the Re520 flow, with no metastable flows
or bursts, as can be seen in Fig. 4. The statistics of geometry
show that in this respect the Re530 flow is closer to the
small-scale bursts than to the metastable periods of the Re
520 flow. There is some broadening of the distributions of
u“ju and curvature, high values in particular of both being
more probable. Theu“ju and curvature in regions of low
vorticity magnitude are if anything even stronger. Torsion
here varies little over a wide range in vorticity, except for
high values in regions of low vorticity magnitude, as the
specific character of ABC flow is lost.

Finally, for higher Reynolds numbers~from Re5100 and
up! all residual order disappears from the behavior of the
modes and the gap in magnitude betweenk51 and smaller-
scale modes disappears, making way for a continuous spec-
trum.

V. DYNAMICS AND GEOMETRY

In this section we analyze the connection between vortex
line geometry and vortex dynamics as seen in our simula-
tions. We will refer mostly to the Re52200 ABC-forced
data, as most representative of strong turbulence; when we
refer to other data we will mention this explicitly. The Re
52200 data are averaged over 140 data sets, each consisting
of the complete flow of 1923 points at a certain time. This
collection of data sets spans over 15 turnover times of the
flow. The energy spectrum of the flow agrees with the results
of previous simulations and shows good resolution of small
scales.

The WDFs in Fig. 5 clearly show that for most of the
range of vorticity the curvature of vortex lines goes down as
the magnitude of their vorticity goes up. There seems to be
some saturation at high vorticities. Assuming our discussion
of Sec. II B to be comprehensive, several mechanisms could
be responsible for the straightness of strong vortices. One

could, however, conclude that the saturation at high vortici-
ties is due to local induction of stretching by strongly curved
vortices, since no other effect seems available to cancel the
tendency of vortices to straighten as their vorticity goes up.

We go on to examine one particular mechanism for
straightening strong vortices, that in which stretching both
enhances vorticity and straightens vortex lines. We recall
that, on the other hand, the analysis of Ref.@7# showed no
connection between stretching of vortices and their align-
ment. The WDFs of Fig. 6 show that while the inviscid vor-
ticity growth ratea of Eqs. ~4! and ~12! goes down with
curvature, this is not true ofuau, or of a as a function of the
misalignment. It seems reasonable to explain these findings
as showing that indeed stretching straightens curved vortex
lines; then if we ignore the difference between stretching and
compressionby the strain by looking atuau, the effect bal-
ances out and we have a slight growth ofuau with curvature,
probably stemming from a weaker effect of local induction
of a by curvature, as seen in Fig. 6. Any other explanation
for the curvature-stretching rate correlation, such as some
effect acting both on vortex line curvature and strain, must
explain this sensitivity to the phase of the strain. The finding
thata shows no particular dependence on the misalignment
N supports the picture in Ref.@7# of straightening, but not
aligning, of vortex tubes by stretching. To better see the
regions of very strong stretching we show in Fig. 7 the WDF
of curvature as a function ofa. For lowera ’s the curvature
goes down witha. However, for very higha, corresponding
to the tail of the PDF of thea ~not shown!, we indeed see a
tendency towards higher curvatures, so we can see here more
clearly the effect of local induction. This does not appear in
thea vs c statistics of Fig. 6 at high curvatures, since many

FIG. 3. Behavior with time of energies in ABC modes in
Re530 flow ~for a subset of the data!. Note the closeness toA2

flow around, e.g.,t5650, 870, 970, and 1020 and toA1 flow
around, e.g.,t5690, 820, and 1040. Solid line,~1,0,0!; dotted line,
~0,1,0!; dashed line,~0,0,1!. Logarithms are to base 10.

FIG. 4. Behavior of shell energies in Re530 flow, showing a
disappearance of all metastable flow. Logarithms are to base 10.

FIG. 5. WDFs of dependence on geometry. Solid line, curvature
c; dotted line, torsionT; dashed line, misalignmentN vs vorticity.
The statistics are averaged over 140 flow samples of Re52200
flow. Note the saturation at high vorticities.
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strongly curved points are in low vorticity regions with low
a.

One might doubt the connection assumed~to a certain
extent! above betweena and the magnitude of vorticity,
since the former is only an instantaneous measure of vortic-
ity growth and no guarantee of continued growth. However,

the WDF ~not shown! of a vs v shows that the correlation
between the two is strong and monotonic, presumably be-
cause vorticity is built rather quickly and smoothly.

To confirm our picture of vortex dynamics we have ana-
lyzed separately the terms of Eq.~12! for the curvature. As
we stated in the Introduction, the picture of vortex tubes
straightening as they strengthen depends on the first~homog-
enous! term being dominant, at least over time, in areas of
vorticity growth. In Fig. 8 we see the PDF of the three terms.
The first term has a definite tendency to be positive.~This is
connected with the breaking of time symmetry in turbulent
flows by the energy cascade, also manifested in the positive
sign of the determinant of the strain tensor and the negative
third velocity difference cumulant or skewness.! The second
term reaches the largest absolute values but has the smallest
space-time average since positive values are balanced by
negative ones. The third term has a tendency to be negative,
presumably explained by the residual chiral symmetry break-
ing of the flow; in the simulations stirred by a random force
this effect disappears.

In Fig. 9 we can see the WDF of the dependence of the
sum of the second and third terms on the first, for data sets of
points over various thresholds of vorticity magnitude. The
first things that strikes the eye is that contrary to the naive
expectation, there is a definite correlation between the mag-
nitude of the first and other terms. We can see that for points
being compressed (a,0) the second and third terms domi-
nate the first, weakening the connection between curvature
and vorticity. For points being stretched, on the other hand
(a,0), the first term dominates, and this is increasingly
marked for high values ofa and high vorticities. This re-

FIG. 6. Solid line, WDF ofa vs curvaturec; dotted line,a vs
misalignmentN; dashed line,uau vs curvature. The statistics are
averaged over 140 flow samples of Re52200 flow.

FIG. 7. WDF ~dependence! of c on stretching ratea in Re
52200 flow. The statistics averaged over 140 flow samples. Note
the curved geometry at very high stretching from local effects.

FIG. 8. Comparison of the terms in the curvature equation in
terms of magnitude. Solid line, PDF of the first term in the curva-
ture equation; dotted line, second term; dashed line, third term. The
statistics are averaged over 140 flow samples of Re52200 flow.
Note particularly the large size but small average of the second
term.
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moves the fear that hidden correlations between terms of Eq.
~12! could cancel the straightening effect of stretching.

We thus conclude our discussion of the straightening of
vortex lines by stretching by saying that indeed it seems that
this effect is real and seems as expected to make strong vor-
tex lines straight but not aligned. This brings us to examine
the correlation between curvature and the misalignmentN or
the total distortionu“ju. One might think from the above
discussion, and assuming that straightening by stretching is
the main effect determining the dependence of vorticity on
geometry, that the misalignment would not go down with
vorticity, since no analytic connection has been found be-
tween stretching and misalignment. In fact, as we can see
from Fig. 5, at low vorticitiesN goes down with vorticity
just as strongly as curvature, if not more so; at higher vor-
ticities we see a saturation similar to that for the curvature.
Judging by the stretching effect, one would expect that in the
strongest tubes curvature would be a small part of the
u“ju. In fact, the plot of the ratioc/u“ju for data sets thresh-
olded by different vorticity magnitudes~Fig. 10! shows that
the dependence on vorticity magnitude is weak and that at
the highest vorticities the probability of curvature-dominated
tubes becomehigher. Pictorially this means that curved tubes
of well-aligned vortex lines are common in high vorticity
regions; this is indeed observed in simulated flow fields. The
PDFs of the ratioc/u“ju for various Reynolds numbers seen
in Fig. 11 show that the distribution of this ratio, including
that fact the curvature is not usually the dominant component
of the u“ju, is very robust. All this would imply that at least
for some vorticities the effect of the stretching mechanism is
not the dominant one compared to the other effects men-

tioned in Sec. II B. Comparisons of these distributions to the
results of lower Reynolds runs and to runs forced by a ran-
dom forcing show that all conclusions are in no way af-
fected.

To conclude this survey of our results we turn to torsion,
which is treated only briefly in this study. The analysis of
Sec. II B would suggest that torsion will go down with vor-
ticity, but much less strongly than curvature or misalign-
ment, and this expectation is borne out as can be seen in Fig.
5, where the dependence of torsion on vorticity is shown.
Saturation, even higher torsion, for high vorticities is again
seen, again presumably due to local induction of stretching:
besides, e.g., curvature, torsion too contributes locally to the
growth rate, and one can derive terms proportional to the
torsion in an expansion aroundx of a(x). This could create
a tendency ofa(x) and thus the local vorticity to go up with
torsion and explain the saturation.

In Fig. 12 we can see the dependence of the curvature,
u“ju, and torsion on the Taylor scale Reynolds number. We
have made a log-log plot of each quantity normalized by the
integral scaleL, in order to compare them to various length
scales that act likeLRe2x for high Reynolds number. The
L ’s used were the average over the calculatedL for each run,
which differ slightly from run to run~see Table I!. In order to
compare better with scaling behavior, we have also plotted
the pointwise slopes from the log-log plots.

Although one cannot speak of a real power law behavior
in such a narrow range of Reynolds numbers, the curvature
andu“ju at least seem to be quite close to a power-law, and
furthermore to the same power law, within the variations
seen. The pointwise exponents are not constant and have
averages ofx51.0 for curvature andu“ju andx50.85 for
torsion, the latter number being rather unreliable. Our result

FIG. 10. PDF ofc/u“ju. Solid line, threshold overvmax/4; dot-
ted line, threshold overvmax/2; dashed line, threshold over
3vmax/4. The statistics are averaged over 140 flow samples of Re
52200 flow.

FIG. 9. WDF ~dependence! of the sum of the second and third
terms in the curvature equation on the first term. Solid line, thresh-
old over vmax/4; dotted line, threshold overvmax/2; dashed line,
threshold over 3vmax/4. The statistics are averaged over 140 flow
samples of Re52200 flow. Note the increased dominance of the
first term at high vorticities.
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cannot rule out a scaling with the Kolmogorov length
L21Rel

3/4; given the limited range one would hesitate to rule
out even the Taylor length scalingL21Rel

1/2. However, the
possibility of a ‘‘deep-dissipation ’’scale scaling asLRel

21 is
intriguing and hints of new physics below the dissipation
scale.

We finally compare briefly with the case of magnetohy-
drodynamic flux tubes. Since the equation for the magnetic
field in magnetohydrodynamics is formally identical to that
of vorticity in NS dynamics, the first three effects mentioned
in Sec. II B, creating a negative correlation between curva-
ture andu“ju on vorticity magnitude should hold for the
connection between the flux line curvature andu“ju and
magnetic field. An initial numerical analysis of this connec-
tion was presented in Ref.@20#, where the curvature and
u“ju of flux lines were calculated in a direct numerical mag-
netohydrodynamic simulation for point sets thresholded by
various magnetic-field magnitudes. The result was that cur-
vature andu“ju went down consistently with magnetic field.
This supports our general picture, although the results of Ref.
@20# do not allow an exact comparison. One should note that
since in flux tubes locally induced growth~the fourth effect
of Sec. II B! does not exist, the dependence of flux tube
geometry on magnetic field is simpler than the dependence
of vortex line geometry on vorticity.

VI. CONCLUSION

As this article appears to be first in offering a detailed
study of the geometry of vortex lines in turbulent flows, it is
noteworthy that such an analysis seems to be possible and
meaningful. The answers we got are reasonable and self-

consistent. Different runs yield robust results that do not de-
pend on minute details. The main physical conclusions that
can be drawn from our simulations are as follows.

~i! Vortex lines in regions of strong vorticity tend to be
well aligned and straight~see Fig. 5!. Alignment gets better
the higher the vorticity, although at the highest values of the
vorticity we observed a saturation in the decline of the align-
ment.

~ii ! As proposed in@7#, the stretching of vorticity indeed
tends to straighten vortex lines. Numerically this is seen as
the appearance of strong correlations between the stretching
and the straightness of the vortex lines~see Fig. 6!. The main
potential pitfall in this expectation, the potentially canceling
effect of additional terms, was shown to be unfounded~see
Fig. 9!.

~iii ! It is not obvious that the mechanism verified in~ii !. is
the dominant cause for the phenomenon found in~i!. For one
thing, there is no theoretical expectation of a connection be-
tween alignment and stretching, but as we show the increase
in alignment with vorticity is just as strong as the increase in
straightness. It is possible that the stretching mechanism is
responsible for straightening and that there exists another,
yet unidentified, mechanism for alignment. It is also possible
that the effect of kinematic constraints in lower vorticities
and of viscid diffusion in higher vorticities, acting both on
curvature and misalignment, greatly dominates in size the
stretching effect.

Needless to say, the curbing of finite-time singularities

FIG. 11. PDF ofc/u“ju in runs with Re5100 ~solid line!, Re
51000 ~dotted line!, Re51500 ~dot-dashed line!, and Re52200
~dashed line!. Statistics averaged over 40, 40, 20, and 140 flow
samples, respectively. Note the robustness of the result.

FIG. 12. ~a! Average curvature,u“ju and torsion vs average
Taylor scale Re in the ABC-forced runs. The quantities are normal-
ized with the average integral scaleL as measured in each run.~b!
Scaling exponents of curvatureu“ju and torsion~e.g., c;Rexc)
estimated from the pointwise slopes in graph~a!. The statistics are
averaged over 40, 40, 20, and 140 flow samples, respectively. All
logarithms are to base 10.
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necessitates both straightnessandalignment. Thus the align-
ment at high vorticities seen in our simulations supports the
general idea that there may exist a self-correcting mechanism
that explains the rarity of such singular behavior in simula-
tions of the incompressible Navier-Stokes equations. Al-
though we do not have a full dynamical theory of the in-
creased alignment, its observation strengthens the connection
between vortex dynamics and regularity.
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APPENDIX: EQUATIONS FOR NUMERICAL
CALCULATION OF GEOMETRICAL QUANTITIES

Direct calculation of curvature,u“ju, and torsion is prob-
lematic since their calculation involves differentiating the di-
rection fieldj, which is nonanalytic at points wherev50. In
particular differentiation of thej field cannot be performed
in Fourier space.

Thus for purposes of calculation we used formulas that
involved only derivatives of the vorticity field itself. We first
define~and in calculations calculate!

A[~v•“ !v2, ~A1!

B5v3c, ~A2!

and

E5~v•“ !v. ~A3!

From the definition of the curvature vectorc5(j•“)j we
can easily find that

c5
1

v2 FE2
1

2v2AvG ~A4!

and the curvature isc5ucu.
The torsion is defined asT5b•(j•“)n. Using b5j3n

we can write

T52
1

v2c2
B•~v•“ !c. ~A5!

Using the equation above forc we can write

~v•“ !c52
3A

2v4E1
1

v2 ~v•“ !~v•“ !v ~A6!

1
2

v6A
2v2

1

2

v

v4 ~v•“ !~v•“ !v2.

~A7!

We then find that

~v•“ !~v•“ !v5~E•“ !v1(
i , j

v iv j] i] jv. ~A8!

Since we are multiplying (v•“)c by B5v3c, we can set
all terms in (v•“)c that are proportional tov or c to zero
and have

T5
1

v2B•F 3v2AE2~E•“ !v2(
i , j

v iv j] i] jvG . ~A9!

Finally, theu“ju is calculated through

u“ju25U“S v

v D U25 1

v6 (
i , j

S v2] jv i2
1

2
v i] jv

2D 2.
~A10!
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