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Dynamics of vortex lines in turbulent flows
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We examine the dynamic interplay between vorticity magnitude and vortex line geometry, and its relevance
for curbing potential finite-time singularities in incompressible Navier-Stokes flows. We present direct numeri-
cal simulations of flows with various low and mid-range Reynolds numbers and different types of forcing. The
central conclusion is that the vortex lines in regions of high vorticity tend to be straight and well aligned. Such
an organization indicates the existence of a self-correcting mechanism that cancels the quadratic nonlinearity
inherent in the vorticity equation. We consider several relevant effects, including the observation of straight-
ening of vortex lines by stretchingS1063-651X96)11711-6

PACS numbd(s): 47.27—i

I. INTRODUCTION

Jw
. . . . _ —+Uu-VYo—rVe=(a—v|V§?w. (4
The aim of this paper is to examine the dynamics of vor- at

tex lines and vortex tubes in turbulent flows. Our motivation
is that, on the one hand, numerical simulatidtis-4] and
experimentd5,6] indicate that even in highly complex tur-
bulent flows the vortex lines in regions of intense vorticity
appear to be quite straight on the scale of the entire syste
Visualizations of the numerical data in these papers show th
domination of the flow by a tangle of “wormlike” vortex
tubes. We thus take, in this paper, the existence of such tub
as given, and indeed visualizations of vorticity isosets in the
data presented here show a collection of very similar tubes.
We note, on the other hand, the apparent lack of finite-time
singularities in incompressible Navier-Stokes flows. It is L L .
tempting to propose that there exists a connection betweef/€ S€€ that this integral over the vorticity includes a contri-
the two phenomena. Indeed, it was proposefFirthat such ~ Pution from the vorticity at the poink. If the vorticity in-

a connection is indicated by mathematical analysis. In thi€"€aSes at a point the stretching rate at that point increases

paper we proceed to examine the same issues on the basis3{d the possibility of a finite-time singularity is created. In-
direct numerical simulations. eed, numerical simulations of highly symmetric flows by

As is well known, the Navier-Stokes dynamics of the vor- K€M [9] and Boratav and Pelgl0] indicate that the Euler
ticity contains a term that may lead to a finite-time singular-(inviscid) incompressible equations can reach a finite-time
ity. To see this we start from the Navier-Stok@tS) equa- singularity in certain specific situations. Such evidence of

tions for the velocity fieldu(x,t) of an incompressible fluid bIowgps h_as not bgen obse_rved in'viscid flow. .
It is entirely possible that in physical systems the potential

singularity is avoided by mechanisms that are not contained

In this equation{= w/ @ and
a=§- (¢ V)u. 5
ne can express the ‘“stretching ratet in terms of the

vorticity by using the Biot-Savart inversion of the curl op-
glator, giving us the expressi¢g]

3 A dy
a(X)—EJ -y Loty x &0 ipm- (6

Dtuz(;—Lthu'V)u: —Vp+vV2u+f, (1) in the incompressible equations. For example, an abnormal
local increase in vorticity may be carried away by sound
modes that are dispersed over a long distance. Yet one rec-

V-u=0, (20 ognizes that no finite-time singularity has ever been seen in

simulations of incompressible fluids, and it is thus interesting
to ask whether those fluids exhibit mechanisms to avoid such
singularities as well. We thus seek mechanisms to curb
blowups that stem from the geometry of the vorticity field. In
particular we revisit in this paper ideas presented recéitly
that connect the dynamics of vortex lines with such mecha-
nisms. Vortex lines are those lines that are everywhere tan-
gent tow. It can be seen directly frontd) that if the vortex
field is locally aligned and straight, the local contribution to
The term that can lead to singular growth is the first term orx vanishes and with it the possibility of finite-time singular-
the right-hand side of this equation. Sineeis the antisym- ity. The main theoretical idea proposed[ifi is that in those
metric part ofVu this term is potentially quadratic and may regions undergoing strong stretching, there is also a mecha-
lead to finite-time singularities. This can be seen more exnism for local straightening of the vortex lines. This paper

where p(x,t) is the pressuref(x,t) is the external driving,
andv is the kinematic viscosity. Defining the vorticiby as
w=V Xu, we find the vorticity equatior{disregarding the
forcing)

w
thsﬁ+(u~V)w=(w~V)u+vV2w. 3

plicitly in the equation for the vorticity magnitude
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attempts to examine this idea further with the help of direct
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numerical simulations. Furthermore, we examine in general N2=|V&%—c?=|(n-V)&%+|(b-V)&>. (10)
the statistics of geometric properties such as the curvature
and torsion as characteristics of the flow field. N expresses the lack of alignment of a vortex line relative to

The structure of the paper is as follows. In Sec. Il weijts neighbors, through local twisting or divergence.
discuss the relevant characteristics of vortex lines: their cur-
vature, torsion, and alignment with respect to neighboring
lines. In Sec. Il we present our numerical methods of simu- o T o ]
lation and analysis. Section IV deals with results that pertain One can distinguish between viscid and inviscid effects in
to low Reynolds number flows. We stress in this section th&/orticity dynamics, corresponding to the second and first
importance of the structure of the vorticity field near zeros ofterms of Eq.(3) respectively. In the context of inviscid dy-
the field and the independence of the strength of curvaturBamics one can also distinguish between locally induced and
from that of the energy contained in small scale modes. Iftonlocally induced vorticity growth, corresponding, respec-
Sec. V, which is the central section of this paper, high Reylively, to the close and distant integration ranges in @&y.
nolds flows are considered. The main conclusions from the Different forms of vortex line distortion can contribute to
simulations are that indeed in high vorticity regions vortexthe locally induced vorticity growth. The analysis[af con-
lines are relatively straight and aligned and that there ar§idered well-aligned tubes, defined as those for which the
strong correlations between the magnitude of stretching angurvature dominates the total distortio¥ §|. The “local”
straightness of the vorticity field. We feel that these numerifate of stretchingrqc was calculated. By the “local” contri-
cal results on the whole strengthen the possible connectiopution to a(x) we mean the integral of Ed6) taken only
between the dynamics of vortex lines and the control ofovera small ball arouns. This contribution was found to be
blowups in the incompressible Navier-Stokes equations. ~ Proportional to the vorticity and the curvature

B. Line geometry and dynamics

o™~ WC. (11
Il. GEOMETRY OF VORTEX LINES
A. Frenet frame This.would seem tq crea;e a qufadratic.nqnlinearity in(B)q._
) ) ) ) ~leading to a finite-time singularity; a similar effect can arise
In this study we will consider three geometrical quantitiesin the local growth rate for any geometry.

characterizing the vortex lines: theiurvature misalignment Referencd 7] then uses the Navier-Stokes equation, Eq.
andtorsion Each is a local quantity, defined in terms of the (2) to derive an equation for the inviscid evolution of the
vorticity direction field& [11-13. curvature

The |V & measures the departure of the vortex lines from
complete straightness and alignment; it is the inverse of a D,.C=—ac—TS,+(£&V)S,, (12
length scale. The curvature is defined[ 4]

whereS, and S, are two strain tensor components

1
=_=|(& 7
c=g=I&EV4 @ Sy=b-S ¢ S,=nSE& (13)
and is the inverse of the radius of curvatiiteof the vortex  Referencd 7] suggested that since no particular correlations
line. are expected between the terms on the right-hand side, in

One can define at each point in a vector field a localregions of rapid growth of vorticityso thata is high the
orthogonal frame called thErenet frame[14], defined in first term will be dominant and will straighten the vortex at
terms of three orthogonal unit vectors, the first in the vectoljust the same rate that the vorticity grows. Thus in B@)
field direction§, the second in the direction of the curvature the growth in the vorticity will be canceled by the growth in
n of the vortex line & V)&=cn and the completing binor- the radius of curvature and the size of the local contribution
mal b. The torsionT, also with units of an inverse length to « will saturate; this will turn the potential finite-time sin-

scale, can be written in closed form as gularity in Eq.(3) into exponential growth.
Referencd 7] also considers the effect of viscosity on the
T=[(& V)b| (8)  vortex lines. It was shown that there exist viscid effects that

enhance alignment and straightening of vortex lines, particu-
and represents the turning of the binormal as one goes alongrly in regions of strong vorticity magnitude.
the filament; in other words, it represents the local deviation Thus Ref[7] considers two effects that can influence the
of the vortex line from a plane, just as the curvature repreconnection between vorticity magnitude and curvature: the
sents the local deviation of the vortex line from straightnessstraightening of vortex lines by stretching and by viscid
Curved lines have+ 0, twisted lines havd #0. smoothing, both causing curvature to decrease with increas-
The total| V£ can be seen as the vector sum of the cur-ing vorticity. The first should be strong in regions of strong
vature and the lack of alignment between the vortex lineenough vorticity to ensure that a largehas been operating
and the neighboring lines in the normal and binormal direcfor some time, the second in medium-strength vorticity re-
tions gions where diffusion has had a chance to be effective.
However, we here note that two other effects influencing
IVE2=c?+|(n-V)&2+]|(b-V)&>. (9)  the connection between vorticity magnitude and curvature
can have a role. A third effect has the same tendency for low
We can thus define the misalignment by vorticity magnitudes. Look at the vicinity of a zero point of
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the vorticity. Use coordinates based at a zero point and with . METHODS
axes in the eigendirections of the vorticity gradient tensor.

o A. Simulation
Near the zero the vorticity is imuiat

The data analyzed comes from our direct numerical simu-
oy=aX, w,=*py, w,=—7vyZ (14  lations of isotropic homogenous turbulence in a periodic box.
A pseudospectral method was used. Dealiasing was per-
(from incompressibilitya = 8— y=0). One can then verify formed by setting allti(k) with k> %K., to zero before
that both the curvature and the misalignment diverge whetransforming theti(k) to real space in order to perform a
approaching the zero point. Given this structure, in a monoproduct.(One might mention that no significant differences
tonic neighborhood around a zero point both the curvaturdetween runs with and without aliasing were observ&te
and the misalignment will decrease with increasing vorticity.runs were performed on a Cray C94 supercomputer at the
The effect should also persist in a smooth neighborhood oEray Research Center, the Cray J916 at the Weizmann Insti-
time after the disappearance of such a zero point. A furthetute and the Cray J932 at Israel's Inter University Computer
consequence of the incompressibility of vorticNy w=0 is  Center.

that For most of the runs the forcing used was the Arnold-
Beltrami-Childress(ABC) force [15], which is defined in
Ve (V) 15 terms of the ABC velocity fieldJ, whose components are
P

U,=Asin(kyz) + Ccod kpy),

This quantifies a natural conclusion from Kelvin's law: it
implies that if going along a vortex line the vorticity goes to
zero,V - £ and therefore the total distortioN &, diverges. It o
also shows that if along a vortex line there is a polynomial U,= Csin(koy) + Bcogkox). 17)

rise in the magnitude of vorticity, it is necessarily accompa—ris flow is a solution of the Euler equatiofise., the NS

nied by a drop in the divergendé- £ in the vorticity direc-  oqyjations withy=0 and no forcingand a solution of the NS
tion. This effect should be strong near zero-vorticity pointsequations with forcing given by the ABforcef= kaU The

and in regions of polynomial grqwth. Divergence IS & part Ofreason for using this forcing was the existence of detailed

Studies of this flow at low Reynolds numbéis$,17] and the
%bility of the flow to excite turbulence rapidly due to its
chaotic nature.

In our runs we used the parameteks=B=C=1 and
=1. The ABC solution for this forcing loses its stability at

U, =Bsin(kox) + Acogko2),

a swelling vortex tube has curved vortex lines. This mean
that ablowup of divergence implies a blowup of misalign-
ment and curvatureCorrelations between divergence and
vorticity can also affect the latter three quantities, althougrko

SuT:ri]naatllllmkalsS |rt]c|); Sglgglyfrgﬁe(fj?%rmer discussion, curva- Re=13.05[16] (we here use the definition Rel/v). Gallo-

ture canyi’nduce local stretching. If the local inductio,n could! &Y and Friscl‘[16] a.n'd Iater.Podvigina and Pouqydtr]

be consistently dominant, this fo.urth effect would create highhave studied the stability .Of this flow for & range of Reyno!ds
SR e : ; . 2"humbers and found that it undergoes a series of bifurcations

vorticity in highly curved regions. In view of the discussion

. . . . and reaches a temporally chaotic state for-R28.
in [7], this would happen if the other strain components hap- Some runs Wereglso gerformed using a random forcing in

pen to keep the curvature high dgspite stretching. This eﬁe%rder to see if some of the effects we observe might result
EE%‘;M be strong in regions of high curvature and high VO rom the particular form of the ABC force. The random force

To summarize, the first three effects act to create a negéj-SEd’ in particular, has chiral symmetry and is much less

. ) - . coherent in time than the ABC force. We forced all the
tive correlation between curvature and vorticity, while the

. o : modes with|k|<2.5, i.e., the modes=1,0,0), (+1,+1,0),
fourth acts to create a positive correlation; the first effect +1+1+1), (=2,0,0). and ¢2,+1,0) and their permuta-

should hold, as far as we can see, for curvature only, whil ions. The forcing was of white noise form, i.e. the real and

the last three hold equally for curvature and misalignment; : )

. .. ~imaginary parts of each of the complex Fourier components
The study of the connection between curvature or mlsahgnbf each mode were chosen as two independent random num-
ment and vorticity magnitude will take a central role in our P

study bers distributed uniformly between 1 ardl, with no cor-

We finally discuss torsion. Of the above four effects, onlyrelatlons In space or time. .
the third does not hold for torsion since torsion does no A number of runs at various integral-scale Reynolds num-
necessarily diverge near a zero point. A dynamic equatio:?erS were performed. The parameters of the runs are summa-
for the torsion is derived ifi7] in the same way as for the fized in Table I.

curvature; the result is
B. Analytic routines

In principle the calculation of the geometrical quantities
could be done using the definitiofisee Eqs(7) and (8)]
given in the Introduction. However, this makes the calcula-
so one would expect stretching to reduce torsion in the samion in Fourier space of derivatives impossible; these quan-
way that it reduces curvature. [lid] it is shown that diffusion tities, which involve derivatives of the vorticity direction
too reduces the torsion of vortex lines. field &, are singular at those points whefés undefined, i.e.,

T 1
D,T=—aT+c§+ (& V)[Esn-i—z(g-V)Sb , (16
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TABLE |. Parameters of the various numerical runs.

Run Forcing Mesh Re Re L
ABC-20 ABC 32 20 43

ABC-30 ABC 32 30 56

ABC-100 ABC 64 100 43 21
ABC-500 ABC 128 500 56 1.8
ABC-1000 ABC 128 1000 68 1.75
ABC-1500 ABC 128 1500 76 1.7
ABC-2200 ABC 192 2200 93 1.75
R-300 random 6% 300 60 1.7
R-1500 random 178 1500 80 2.0

where w=0. Because of this problem, formulas were usednumber of points whose value af falls within each box,
expressing all quantities in terms of derivatives of the vor-then normalizing by the total number of points. A WDF is
ticity vector, which is regular and differentiable everywhere.designed to find the dependence of a quantitysay, the
The formulas for calculation of the curvature, total distor-curvature on a quantityy (say, vorticity on average. To do
tion, and torsion are given in the Appendix. this, we divide a range of values gfinto a number of boxes
The code for the calculations was checked on two kindsnd find the number of points whose valueydfalls in each
of simple flows. For very simple flows the geometric calcu-box and the sum of the values wfof these points; we then
lations can be done analytically. Specifically, expressionglivide this sum by this number of points to find the average

were found for the curvature in the Roberts flow value ofx in each box. Such statistical functions were re-
R . corded at regular intervals, frequently enough to follow the
u, =sin(x)cogy), main developments of the dynamics and to allow good sta-
R i tistics. The data sets consists of at least 40 outputs for every
uy = —cogx)sin(y), run and reaching up to several hundred outputs for the low
R ) _ Reynolds runs.
uf=2sinx)sin(y), (18 We will now make a few remarks about PDFs in general.

We begin with a formula for the PDF of a scalar quantity in
space, assuming that the dependence of this quantity on
''space is given.

Given a functionT(x) defined in some volum&/, the

and for the Roberts flow modified by a uniform flow
w=uR+(a,0,0). In addition, we calculated the curvature
misalignment and torsiofequal to zerpin the flow

w,=a+sin(x), PDF P(T) is given by
wy=a, P(T)= 1T (20)
vV dT '’
w,=a, (19

whereV(T) is the volume of points witll(x)<T. That is,
with a an arbitrary constant. Comparisons with the numericafor small AT,
results of our code gave excellent results, maximal errors not
gxceeding maphine prec_ision. For more complex rovx_/s_, fin(_j- P(T)AT= E[V(TJF AT)—V(T)]. (21)
ing an analytic expression for the geometric quantities is \Y
prohibitively difficult, but derivatives of the velocity field L )
can be performed analytically rather easily. We can then usgh]s is just the formula that we use for our numerical calcu-
these expressions for the derivatives to calculate geometrf@tions. If we use a measuds; dx, on the surfac&V(T) of
quantities by performing the remaining algebra numerically.V(T) and dxs for the integration normal to the surface
Calculations of this type were performed for the ABC flow ¢V(T). the normal direction depending on the position on
with A=B=C=1 and for the Roberts flow for curvature, the surfacex,,x;), then asAT—0 we have
misalignment, and torsion. Comparisons with our code’s re-

X . . . 1 1
sults were again excellent, with maximal errors reaching P(T :_J dxdxo—o— 22
10719, (M Vv ! 2|VT(X11X2)| 22
- . In discretized space the version of this formula is
C. Statistical analysis
The code used produced directly as output statistical P(T) = } s 1 23
analyses of the quantities studied, in the form of probability ()= nrdet [VT(x)|’ (23

distribution functiongPDF9 and what we call weighted dis-

tribution functiongWDFs). The PDF of a quantity, such as  where the sum is over all points in the volume considered
curvature, is calculated by dividing a given range of possiblehat have the specified value dfandn is the total number
values ofx into a number of discrete boxes, counting theof points in the volume. While this formula is impractical for
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use in numerical calculations, it allows us to conclude that B. Geometry of the attractor flows

the value of the PDF for a certain value is determined not :
. We here consider and understand the and A4, (ABC)
only by the number of points that have that value but aiso bBflows and see how we can understand gnalytic?illy the main

the form (and in particular the steepngssf the function at features of the statistics of curvature giWtg| in these flows.

the relevant points. . - L
In particular, the PDF diverges at extremal points of theWe will use th? description of the_ qualitative nature of the
, flow found in the study of Childress and SowdrB].

function, unless the two-dimensional measure of the level s } : .
of the value concerned is zero. The PDF can also diverge if hey showed that the flow contains a set of stagnation points

the level set’s two-dimensional measure diverges, i.e., if th€onnected by a network of straight streamlines. The flow
set’s dimension becomes larger than 2. The PDF vanishes gfound these stagnation points is characterized by hyperbolic
points where the gradient of the function diverges and aPehavior of two types. Since the sum of the eigenvalues of
points where the level set dimension drops below 2. the strain tensor must be zero from incompressibility, not all
of the eigenvalues can be either positive or negative, imply-

ing hyperbolicity near the stagnation points. In points with

IV. LOW REYNOLDS FLOW AND GEOMETRY two positive eigenvalues of the strain tensor, the flow comes

In this section we present our observations of low Rey-N towards the stagnation point in a narrow jet around the
nolds flows, i.e., those with integral-scale Reynolds numbeptraight streamline and then fans out into a unstable surface
of Re=20 and 30, together with similar geometric analyses®n Which the stagnation point lies. In points with one posi-
of two ABC flows. Our main objective is to see how we can tive eigenvalue of the strain tensor the flow comes into the
connect analytic understanding and numerical results of thetagnation point from all directions on a stable surface, exit-
geometry of flows simpler than fully turbulent flows. We ing the vicinity of the stagnation point in a narrow jet around
first observe the Re20 flow and see that it spends most of the straight streamline. The points of maximal vorticity along
the time near one of three ABC attractor flows. We nexta streamline lie between stagnation points of these two types,
analyze the geometry first of the ABC attractor flows, then ofwhere the flow from a point with one positive eigenvalue
the Re=20 flow. Finally we see how the flow changes as theféaches maximal convergence before starting to diverge
Reynolds number begins to rise. again towards a point with two positive eigenvalues. The

points with the highest vorticity¢=6) in the 4, flow lie on
the streamlines parallel to the=y=2z direction, called the
A. Nature of the Re=20 flow primary streamlines by Childress and Soward.

We first consider the Re20 runs. As noted by Podvigina ~ We have made a similar qualitative analysis of the geom-
and Pougquet in their studit 7] of low-Reynolds ABC-forced  €try of theA; flow. This is simpler than that of the, flow,
flow, at this Re the initial ABC flow (that with  having alower symmetry of structure. If we analyze, e.g., the
A=B=C=1) is unstable, and after a period of exponential-A, case withB=C, we can see that here too a set of straight
growth and saturation of the small scales the flow alternatestreamlines exist. These lines on thg planes are given by
between three attracting metastable flows in phase space. & m/4+mx/2, as seen in Fig. 2. The flow along each
these flows the large-scale modes are close to those of ABgiraight streamline is constant in direction; there are no stag-
flows with ko=1 and @,B,C)=(0.48,0.48,1.34), nation points in this flow. The direction of the flow in these
(0.48,1.34,0.48 and (1.34,0.48,0.48 respectively. Thus, streamlines rotates by/2 from one plane to another, so that
through the period in which the flow is near each one ofthe direction of flow on a plane is opposite that on its next-
these metastable flows a different ABC mode becomes enefearest neighbor. The parallel streamlines on each plane are
getically dominant. Podvigina and Pouquet call these ABCy27 apart. The flow near the straight streamline has the
flows the A, flows and call theA=B=C=1 flow the A;  shape of a swirling vortex tubghat is, the streamlines are
flow. The full metastable flow is ami, flow distorted by twisted diverging around the points.;, of minimal vortic-
small-scale components created by the excess of incominty and converging around the points of maximal vorticity
energy over the energy lost by the dissipation of the ABCXpax-
modes. As shown by Dombreet al. [19], between the straight

We can see this behavior in our run; as in the work ofstreamlines in all ABC flows the flow is dominated by a
Podvigina and Pouquet, the ABC modes (1,0,0, (0,1,0, system of tubelike regions in which the flow is predomi-
and(0,0,) alternate in dominating the flow except for short nantly in thex direction, in they direction, and in thez
transients. In our study too the small-scale modes are sizabt#irection, although the tubes do also twist appreciably. We
particularly in the short periods of transition betwedn  will, however, refer less to these structures in our following
states. Our results for the chaotic behavior of the ABCanalysis.
modes and energy shells correspond closely to that presented From these structures follow the dependences of curva-
by Podvigina and Pouquet. ture and|V & on vorticity magnitude seen in Figs(dl and

The similarity of the turbulent flow during the metastable 1(d). The|V & when traveling along a primary streamline in
periods to stationary flows with a simple analytic form the A, flow goes from a minimal value at the point of maxi-
makes the Re 20 flow a good place to start a numerical mal convergence and vorticity to a divergence towards the
examination of the geometry of vortex lines. In Fig. 1 we stagnation point. One can verify from Childress and
show the PDFs and WDFs of dependence on vorticity of theSoward’s expansion of the flow field near the primary
curvature,|V £, and torsion in thed; and A, flows and at streamline that théV & at theX., point, where the diver-
times of metastable and transitional -R20 flow. gence and curvature are zero, is minimal despite the fact that
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the swirl of the flow around the streamline is strongest there|.vw|2:A2+ B2+ C? (for ko=1), which is simply a con-

The rest of the flow follows this pattern and we get the de-stant(in our numerics taken to be equal th 3hus, for any

cline of |[V4 with vorticity seen in Fig. d). This depen- ABC flow

dence in theA, flow is remarkably similar to that in the

A, flow, within the narrower range of vorticity magnitudes A2+B2+C2 1

available in thed, flow. In fact, it seems that if we take the |VE2=——F———|Vo??> (25)

A; flow around the streamlines, as it goes from zero to maxi- @ 4o

mal vorticity, and truncate the bundle at those vorticities cor-

responding to that range of vorticity magnitudes available inThis immediately gives for extremal poinig, of vorticity

the A, flow, we will get something very similar to the bundle @= ey, Wherewe,#0, the value

around the streamlines in thé, flow. Naturally, at the top

and bottom of this range of vorticities some adjustment must JAZ+ B2+ C?

be made, as can be seen in Figd)1 |V E&(Xe) | =
Further understanding of tH& & w)| dependence can be

gathered from the equation

(26)

Wex

The robust dependence | & onw might suggest that one
, 1 , 1 - could derive an exact relation between the two, at least for
IV :;2|V""| —H|Vw “. (249 ABC flows. In fact, expansion near the,;, points of the
A, flow shows that vorticity andV w?| are not one-to-one
On the other hand, one can verify that for any ABC flow functions, as the isosurfaces of one quantity is a small dis-
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C. Geometry of the Re=20 flow

We now consider the Re20 flows. As we have said,
these are divided into metastable periods&f flows, dis-
torted by small-scale components, and transient bursts; in
these bursts there is rapid change between the relative
strengths of the large$ABC) modes and heightened small-
scale activity. The examination of this flow will allow us to
examine the effect of small-scale flows and disorder on the
geometry.

As expected, consideration of Figgak-1(d) shows that
the geometry of the metastable flow is very similar to that of
the A, flow. The main difference is a broadening of the
distribution of |V £. The added distortion to all regions also
shifts the whole distribution to higher values of thH€g|.

This similarity is not surprising since the metastable flow is a
FIG. 2. Structure of thed, flow, showing straight streamlines smooth distortion of thed, flow by small-scale distortions.
(dashed lineson the z= w/4+m=/2 planes, and the converging What is less expected is the remarkable similarity between
and diverging swirl of the flow around these streamlines. the geometrical statistics of the small-scale bursts and of the

A; flow. Again, a broadening of the distribution (¥ & is

tortion of the isosurfaces of the other; however, averaginghe main difference between these flows.

over angles we find tha| Vw?|%)=6w? so that near the There are two possible explanations for this similarity;
maximal point both probably have a role. One is that as one néaftow

melts into another, the magnitudes of the three ABC modes
approach closer to one another. This, despite strong distor-

A2+ B2+ C2 tion by small-scale flow, plausibly produces something not

|V &2~ Ty (27)  too far from the4, flow, which is that flow with all modes

@ equal in strength. Another explanation is the kinematic con-

straints of incompressible flow: as the distortion of the meta-

. . S stable flow creates regions of low vorticity, the vortex lines
s S o ot ol [Nse reions necessaly swel whih il enrance i

ing of tubes of well-aligned vortex lines but directly from the alignment and curvature unless for some reason the swirl is
got el-alg . : y from simultaneously reduced. In dynamic language, as we can see
swelling and swirling inherent in thgv & itself. The major

difference is that at the points of minimal vorticity of the from Eq. (1), this means that the compressigmegative

A, flow the curvature is zeréeing on the straight stream- stretching ratea) of the vortex lines, necessary to create
2 - ; Y . gnt weak vorticity from strong, almost inevitably enhances cur-
lines) and small in its neighborhood, while th¥ £ is at a

. ) vature and misalignment.
peak at these points due to the strong swirl of the flow Finally, we briefly treat torsion. The torsion in thd;

around them. . .
flow is almost all of one sign, so that the flow breaks the
gurther:jnqre,;he PDFs of curvature. d'?a caan 3'50 be chiral symmetry. The torsion in thel, flow seems essen-
o o oottt spe ey Symmerical with an qual amountofps of each
wwo-dimensional measure of th):a set is 2dte PDF is’zero sign. !r_l both cases the torsion is h|gh for both low and high
atc=0 for both A- and A, flows. The dependence of the vorticities, which seems to be a particular property of ABC
1 2 y P flows. The small-scale and metastable=R€® flows are

PDF on the grad|ent seen n .qug) dogs not affect this again respectively similar, except for some broadening of
conclusion, since one can verify th¥tc is nonzero at the istributions

streamlines. However, due to the dense network of straigh So what do we conclude from the R&0 flow? First of

streamlines in thed, flow, the PDF peaks at very low cur- all, as we saw in the ABC flows, the existence of sizable

vatures that fill the regions close to the straight streamllnescurvature and misalignment do not imply the existence of

In the A, ﬂOW’ with its relatively spa_lrse=0 s_et,_the PDF dominant small-scale components of the flow. In large-scale
peaks at a h'_g*_“?r curvature. Fo_r this flow with its NAITOWeTq4\vs the curvature and misalignment must appear near vor-
range of vorticities the distribution of curvature too has aticity neutral points. Second, in low Reynolds flows the geo-
narrow range, with no high curvatures available in the metrical statistics can be explained by a combination of ki-

flow near the stagnation points. : ; : ;
. . nematic constraints and the influence of the forcing.
On the other hand, th€|V & is extremal on the straight g

streamlines in both flows; one can verify tH&fV £ =0 on
these streamlines. Thus, as expected from(E8), we have
a cusp in the PDF at minimaV &. In the Re=30 flow the ABC modes now act chaotically,
To summarize our analysis of the ABC flows, we havealthough Fig. 3 suggests that they still may be attracted to the
shown that the results of our numerical analysis of the geA; and the A, states; the behavior around the times
ometry of a simple flow are reasonable and understandable 540,635,670 and=600,655 suggests an attraction to the
terms of the analytic form of the flow. A; and the A, states, respectively. The behavior of the en-

D. Re=30 flow
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FIG. 3. Behavior with time of energies in ABC modes in 8 J:'z 1

Re=30 flow (for a subset of the dataNote the closeness td,
flow around, e.g.t=650, 870, 970, and 1020 and td; flow
around, e.g.t=690, 820, and 1040. Solid lin€1,0,0; dotted line,
(0,1,0; dashed line(0,0,1). Logarithms are to base 10.

C,N,T

ergies in shells irk space of constant widthk=1 is much
smoother than in the Re20 flow, with no metastable flows
or bursts, as can be seen in Fig. 4. The statistics of geometry
show that in this respect the R&0 flow is closer to the
small-scale bursts than to the metastable periods of the Re
=20 flow. There is some broadening of the distributions of
|V 4 and curvature, high values in particular of both being
more probable. ThéV & and curvature in regions of low
vorticity magnitude are if anything even stronger. Torsion
here varies little over a wide range in vorticity, except for
high values in regions of low vorticity magnitude, as the FIG. 5. WDFs of dependence on geometry. Solid line, curvature
specific character of ABC flow is lost. c; dotted line, torsiorT; dashed line, misalignmem vs vorticity.
Finally, for higher Reynolds numbeffom Re=100 and The statistics are averaged over 140 flow samples of R€0
up) all residual order disappears from the behavior of theflow. Note the saturation at high vorticities.
modes and the gap in magnitude betw&enl and smaller-
scale modes disappears, making way for a continuous speggy|d, however, conclude that the saturation at high vortici-
trum. ties is due to local induction of stretching by strongly curved
vortices, since no other effect seems available to cancel the
V. DYNAMICS AND GEOMETRY tendency of vortices to straighten as their vorticity goes up.

In this section we analyze the connection between vortex W€ go on to examine one particular mechanism for
line geometry and vortex dynamics as seen in our simulastraightening strong vortices, that in which stretching both
tions. We will refer mostly to the Re2200 ABC-forced enhances vorticity and straightens vortex lines. We recall
data, as most representative of strong turbulence; when w#at, on the other hand, the analysis of R&fl showed no
refer to other data we will mention this explicitly. The Re connection between stretching of vortices and their align-
=2200 data are averaged over 140 data sets, each consistifignt. The WDFs of Fig. 6 show that while the inviscid vor-
of the complete flow of 192points at a certain time. This tiCity growth ratea of Egs. (4) and (12) goes down with
collection of data sets spans over 15 turnover times of th€urvature, this is not true dt|, or of a as a function of the
flow. The energy spectrum of the flow agrees with the resultgnisalignment. It seems reasonable to explain these findings
of previous simulations and shows good resolution of smalRs showing that indeed stretching straightens curved vortex
scales. lines; then if we ignore the difference between stretching and

The WDFs in Fig. 5 clearly show that for most of the compressiorby the strain by looking afa|, the effect bal-
range of vorticity the curvature of vortex lines goes down asances out and we have a slight growtH @f with curvature,
the magnitude of their vorticity goes up. There seems to b@robably stemming from a weaker effect of local induction
some saturation at high vorticities. Assuming our discussio®f a by curvature, as seen in Fig. 6. Any other explanation
of Sec. 1B to be comprehensive, several mechanisms coultr the curvature-stretching rate correlation, such as some

be responsible for the straightness of strong vortices. Oneffect acting both on vortex line curvature and strain, must
explain this sensitivity to the phase of the strain. The finding

that @ shows no particular dependence on the misalignment
N supports the picture in Ref7] of straightening, but not
aligning, of vortex tubes by stretching. To better see the
regions of very strong stretching we show in Fig. 7 the WDF
of curvature as a function af. For lowera’s the curvature
goes down withe. However, for very highy, corresponding

200 #00 o 800 1000 to the tail of the PDF of ther (not shown, we indeed see a

tendency towards higher curvatures, so we can see here more
FIG. 4. Behavior of shell energies in R&0 flow, showing a  clearly the effect of local induction. This does not appear in

disappearance of all metastable flow. Logarithms are to base 10. the « vs ¢ statistics of Fig. 6 at high curvatures, since many
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FIG. 6. Solid line, WDF ofa vs curvaturec; dotted line,a vs FIG. 8. Comparison of the terms in the curvature equation in

misalignmentN; dashed lineJa| vs curvature. The statistics are t€rms of magnitude. Solid line, PDF of the first term in the curva-
averaged over 140 flow samples of Re200 flow. ture equation; dotted line, second term; dashed line, third term. The

statistics are averaged over 140 flow samples of2200 flow.
Note particularly the large size but small average of the second

strongly curved points are in low vorticity regions with low )
erm.

a.

One might doubt the connection assumgal a certain .
exten) above betweenr and the magnitude of vorticity, the WDF (not shown of a vs w shows that the correlation

since the former is only an instantaneous measure of vortid?€Wween the two is strong and monotonic, presumably be-
cause vorticity is built rather quickly and smoothly.

ity growth and no guarantee of continued growth. However, ! : !

To confirm our picture of vortex dynamics we have ana-
lyzed separately the terms of E@.2) for the curvature. As
we stated in the Introduction, the picture of vortex tubes
straightening as they strengthen depends on thgfioshog-
6t ] enous term being dominant, at least over time, in areas of
vorticity growth. In Fig. 8 we see the PDF of the three terms.
The first term has a definite tendency to be posit{\féis is
connected with the breaking of time symmetry in turbulent
flows by the energy cascade, also manifested in the positive
sign of the determinant of the strain tensor and the negative
third velocity difference cumulant or skewnesshe second
term reaches the largest absolute values but has the smallest
space-time average since positive values are balanced by
negative ones. The third term has a tendency to be negative,
presumably explained by the residual chiral symmetry break-
ing of the flow; in the simulations stirred by a random force
this effect disappears.

In Fig. 9 we can see the WDF of the dependence of the
sum of the second and third terms on the first, for data sets of
points over various thresholds of vorticity magnitude. The
first things that strikes the eye is that contrary to the naive

0 | \ | expectation, there is a definite correlation between the mag-
0.0 0.1 0.2 0.3 nitude of the first and other terms. We can see that for points
a being compressed®<0) the second and third terms domi-

nate the first, weakening the connection between curvature
FIG. 7. WDF (dependengeof ¢ on stretching ratex in Re  and vorticity. For points being stretched, on the other hand
=2200 flow. The statistics averaged over 140 flow samples. Notéa<<0), the first term dominates, and this is increasingly
the curved geometry at very high stretching from local effects. marked for high values o& and high vorticities. This re-



54 DYNAMICS OF VORTEX LINES IN TURBULENT FLOWS 5131

LANE A SR R IR A R B T T 25_||[|||||1[||\|1|_

201

prob.

11+

1.0

N

\ W H
N, Wb V s\’r

0.5

TR R b0 | 0.0L. 1 0l by
-1.0  -05 0.0 0.5 00 02 04 06 08 10
l C/1vel

FIG. 9. WDF (dependengeof the sum of the second and third FIG. 10. PDF ofc/|V &. Solid line, threshold oves,,/4; dot-
terms in the curvature equation on the first term. Solid line, threshted line, threshold overw,,/2; dashed line, threshold over
old over wy,/4; dotted line, threshold ovew,,,/2; dashed line, 3wnd4. The statistics are averaged over 140 flow samples of Re
threshold over 3,,,/4. The statistics are averaged over 140 flow =2200 flow.
samples of Re2200 flow. Note the increased dominance of the
first term at high vorticities. tioned in Sec. Il B. Comparisons of these distributions to the

results of lower Reynolds runs and to runs forced by a ran-
moves the fear that hidden correlations between terms of Eglom forcing show that all conclusions are in no way af-
(12) could cancel the straightening effect of stretching. fected.

We thus conclude our discussion of the straightening of To conclude this survey of our results we turn to torsion,
vortex lines by stretching by saying that indeed it seems thatvhich is treated only briefly in this study. The analysis of
this effect is real and seems as expected to make strong voBec. Il B would suggest that torsion will go down with vor-
tex lines straight but not aligned. This brings us to examindicity, but much less strongly than curvature or misalign-
the correlation between curvature and the misalignmeat ~ ment, and this expectation is borne out as can be seen in Fig.
the total distortion|V&. One might think from the above 5, where the dependence of torsion on vorticity is shown.
discussion, and assuming that straightening by stretching iSaturation, even higher torsion, for high vorticities is again
the main effect determining the dependence of vorticity onseen, again presumably due to local induction of stretching:
geometry, that the misalignment would not go down withbesides, e.g., curvature, torsion too contributes locally to the
vorticity, since no analytic connection has been found begrowth rate, and one can derive terms proportional to the
tween stretching and misalignment. In fact, as we can sewrsion in an expansion aroundof «(x). This could create
from Fig. 5, at low vorticitiesN goes down with vorticity a tendency ok(x) and thus the local vorticity to go up with
just as strongly as curvature, if not more so; at higher vortorsion and explain the saturation.
ticities we see a saturation similar to that for the curvature. In Fig. 12 we can see the dependence of the curvature,
Judging by the stretching effect, one would expect that in th¢V &, and torsion on the Taylor scale Reynolds number. We
strongest tubes curvature would be a small part of thdvave made a log-log plot of each quantity normalized by the
|V &. In fact, the plot of the ratia/|V £ for data sets thresh- integral scale., in order to compare them to various length
olded by different vorticity magnitudedig. 10 shows that scales that act like.Re ¥ for high Reynolds number. The
the dependence on vorticity magnitude is weak and that dt’s used were the average over the calculatddr each run,
the highest vorticities the probability of curvature-dominatedwhich differ slightly from run to rur(see Table)l In order to
tubes becomaigher. Pictorially this means that curved tubes compare better with scaling behavior, we have also plotted
of well-aligned vortex lines are common in high vorticity the pointwise slopes from the log-log plots.
regions; this is indeed observed in simulated flow fields. The Although one cannot speak of a real power law behavior
PDFs of the ratia/|V § for various Reynolds numbers seen in such a narrow range of Reynolds numbers, the curvature
in Fig. 11 show that the distribution of this ratio, including and|V & at least seem to be quite close to a power-law, and
that fact the curvature is not usually the dominant componenfurthermore to the same power law, within the variations
of the|V g, 